Next-generation sequencing technology in cancer

Authors

  • P. Krubaa UG Scholar, School of biosciences and technology, Vellore Institute of technology, Vellore, India
  • Dr. Anand Mohan Jha Post Graduate Department of Chemistry M. L. S. M. College, Darbhanga ( L. N. Mithila University, Darbhanga, Bihar)
  • Prof Dr.Ammar A.Razzak Mahmood Dept of Pharmaceutical Chemistry College of of Pharmacy-Bab- Al-mouadam. Baghdad. University of Baghdad.
  • Dr. Anil Kumar P. G. Department of Chemistry, Sahibganj College, Sahibganj (S. K. M. University, Dumka, Jharkhand)
  • Dr.John Abraham Assistant Professor (Cancer Research) Department of Family Medicine St. Johns National Academy of Health Sciences, Bangalore, India- 560034 https://orcid.org/0000-0002-4850-5070

DOI:

https://doi.org/10.22376/ijtos.2024.2.3.23-31

Keywords:

Next-generation sequencing (NGS),, Cancer genomics, Personalized treatment, Bioinformatic analysis, Solid cancer diagnosis, Targeted therapies

Abstract

Next-generation sequencing (NGS) technology has revolutionized cancer research and treatment by enabling comprehensive analysis of genetic mutations, alterations, and expression profiles. It allows for the identification of cancer-driving mutations, helping in the development of targeted therapies. NGS provides detailed insights into tumor heterogeneity, resistance mechanisms, and clonal evolution. Its high-throughput capacity facilitates large-scale studies, improving our understanding of cancer genomics. By enabling personalized treatment plans based on individual genetic profiles, NGS holds promise for more effective and tailored cancer therapies. Early reviews on cancer genomics often lacked comprehensive coverage of emerging technologies. They missed in-depth analysis of NGS advancements, their impact on cancer research, and clinical applications. The review addresses this gap by reviving a thorough examination of NGS methods, their role in identifying genetic mutations, and their potential in personalized cancer treatment, thus providing essential insights into the evolving landscape of cancer genomics. The article covers the advancements in technology and bioinformatic approaches for NGS data analysis. It delves into NGS applications in research and diagnostics, particularly for solid cancer diagnosis. The review highlights specific cancer types, including hereditary breast cancer, melanoma, prostate cancer, thyroid cancer, lung cancer, and colorectal cancer. It explores NGS contribution in understanding the genetic basis of these cancers and its potential for enhancing personalized diagnosis and treatment strategies. This review rectifies early lacunas by providing a comprehensive and updated examination of NGS technology, addressing gaps in previous analyses and emphasizes bioinformatic approaches for NGS data analysis, crucial for interpreting vast genomic data accurately. The review meets the current need for a thorough understanding of NGS’s role in personalized cancer treatment and research.

References

Dulbecco R. A turning point in cancer research: sequencing the human genome. Science 1986; 231: 1055–1056.

Stratton M, Campbell PJ, Futreal A. The cancer genome. Nature 2009; 458: 719–724.

Garraway LA, Lander ES. Lessons from the Cancer Genome. Cell 2013; 153: 17–37.

Kinzler KW, Vogetstein B. Lessons from hereditary colorectal cancer. Cell 1996; 87: 159–170.

Knudson AG. Hereditary cancer: two hits revisited. Journal of cancer research and clinical oncology. 1996 Mar;122:135-40.

Wen W, Xiao N, Bender R, Ghazalpour A, Tan Z, Swensen J, Millis SZ, Basu G, Gatalica Z, Press MF. Mutations in the kinase domain of the HER2/ERBB2 gene identified in a wide variety of human cancers. The Journal of Molecular Diagnostics. 2015 Sep 1;17(5):487-95.

Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008; 456: 66–72

Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 2010; 11: 685–696.

Ganini C, Amelio I, Bertolo R, Bove P, Buonomo OC, Candi E, Cipriani C, Di Daniele N, Juhl H, Mauriello A, Marani C. Global mapping of cancers: The Cancer Genome Atlas and beyond. Molecular oncology. 2021 Nov;15(11):2823-40.

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science 2013; 339: 1546–1558.

Lowrence M, Stojanov P, Mermel C, Robinson JT, Garraway LA, Golub T et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495–501.

Leiserson MD, Vandin F, Wu H, Dobson JR, Eldridge JV, Thomas JL et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet 2014; 47: 106–114.

Weir, B., Zhao, X. & Meyerson, M. Somatic alterations in the human cancer genome. Cancer Cell 6, 433–438 (2004).

Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised Phase 3 trial. Lancet Oncol. 11, 121–128 (2009).

Mok, T. S. et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

Rosell, R. et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 361, 958–967 (2009)

Karger BL, Guttman A. DNA sequencing by CE. Electrophoresis. 2009 Jun;30(S1):S196-202.

Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

Weber, G., Shendure, J., Tanenbaum, D. M., Church, G. M. & Meyerson, M. Identification of foreign gene sequences by transcript filtering against the human genome. Nature Genet. 30, 141–142 (2002). 26.

Chiang, D. Y. et al. High-resolution mapping of copynumber alterations with massively parallel sequencing. Nature Methods 6, 99–103 (2009).

Welch JS, Link DC. Genomics of AML: clinical applications of next-generation sequencing. Hematology Am Soc Hematol Educ Program. 2011;2011:30–35.

Wei X, Ju X, Yi X, et al. Identification of sequence variants in genetic disease-causing genes using targeted next-generation sequencing. PLoS One. 2011;6:e29500

Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351.

Gahlau A, Gothwal AS, Chhillar A, Hooda VI. Molecular techniques for medical microbiology laboratories: Futuristic approach in diagnostics of infectious diseases. Int J Pharm Bio Sci. 2012;3(3):B938-47.

Ramalingam AJ, Khan S, Manonmoney J, Archana R. Unlocking The Human Urobiome: Impact On Health and Disease-A Review.(2023). Int. J. Life Sci. Pharma Res.;13(1):L81-95.

Levy, S.E.; Myers, R.M. Advancements in Next-Generation Sequencing. Annu. Rev. Genom. Hum. Genet. 2016, 17, 95–115.

Harris TJ, McCormick F. The molecular pathology of cancer. Nat Rev Clin Oncol. 2010;7:251–265.

Mu W, Lu HM, Chen J, Li S, Elliott AM. Sanger confirmation is required to achieve optimal sensitivity and specificity in next-generation sequencing panel testing. The Journal of molecular diagnostics. 2016 Nov 1;18(6):923-32.

Meera Krishna B, Khan MA, Khan ST. Next-generation sequencing (NGS) platforms: an exciting era of genome sequence analysis. Microbial Genomics in Sustainable Agroecosystems: Volume 2. 2019:89-109.

Alekseyev YO, Fazeli R, Yang S, Basran R, Maher T, Miller NS, Remick D. A next-generation sequencing primer—how does it work and what can it do?. Academic pathology. 2018 May 3;5:2374289518766521.

Van den Hoecke S, Verhelst J, Saelens X. Illumina MiSeq sequencing disfavours a sequence motif in the GFP reporter gene. Scientific Reports. 2016 May 19;6(1):26314.

Ross JP, van Dijk S, Phang M, Skilton MR, Molloy PL, Oytam Y. Batch-effect detection, correction and characterisation in Illumina HumanMethylation450 and MethylationEPIC BeadChip array data. Clinical Epigenetics. 2022 Dec;14(1):58.

Zeng F, Jiang R, Chen T. PyroHMMsnp: an SNP caller for Ion Torrent and 454 sequencing data. Nucleic acids research. 2013 Jul 1;41(13):e136-.

Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nature Reviews Genetics. 2018 May;19(5):269-85.

Chrystoja CC, Diamandis EP. Whole genome sequencing as a diagnostic test: challenges and opportunities. Clinical chemistry. 2014 May 1;60(5):724-33.

Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature biotechnology. 2009 Feb;27(2):182-9.

Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and human complex diseases: recent accomplishments and future perspectives. European Journal of Human Genetics. 2013 Feb;21(2):134-42.

Dillon OJ, Lunke S, Stark Z, Yeung A, Thorne N, Melbourne Genomics Health Alliance, Gaff C, White SM, Tan TY. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. European Journal of Human Genetics. 2018 May;26(5):644-51.

Serratì S, De Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S, Pinto R. Next-generation sequencing: advances and applications in cancer diagnosis. OncoTargets and therapy. 2016 Dec 2:7355-65.

Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015, 13, 278–289.

Vaser, R.; Sović, I.; Nagarajan, N.; Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017, 27, 737–746.

Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020, 21, 30.

Roukos DH. Trastuzumab and beyond: sequencing cancer genomes and predicting molecular networks [published online ahead of print October 26, 2010]. Pharmacogenomics J. 2011;11:81-92. doi:10.1038/tpj.2010.81.

Church GM. Genomes for all. Sci Am. 2006;294:46-54.

Kashyap H, Ahmed HA, Hoque N, Roy S, Bhattacharyya DK. Big data analytics in bioinformatics: architectures, techniques, tools and issues. Network modeling analysis in health informatics and bioinformatics. 2016 Dec;5:1-28.

Jain, A.; Bhoyar, R.C.; Pandhare, K.; Mishra, A.; Sharma, D.; Imran, M.; Senthivel, V.; Divakar, M.K.; Rophina, M.; Jolly, B.; et al. IndiGenomes: A comprehensive resource of genetic variants from over 1000 Indian genomes. Nucleic Acids Res. 2021, 49, D1225–D1232.

Gudmundsson S, Singer‐Berk M, Watts NA, Phu W, Goodrich JK, Solomonson M, Genome Aggregation Database Consortium, Rehm HL, MacArthur DG, O'Donnell‐Luria A. Variant interpretation using population databases: Lessons from gnomAD. Human mutation. 2022 Aug;43(8):1012-30.

Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443.

Lu, Y.; Chan, Y.-T.; Tan, H.-Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol. Cancer 2020, 19, 79.

Baute J, Depicker A. Base excision repair and its role in maintaining genome stability. Critical reviews in biochemistry and molecular biology. 2008 Jan 1;43(4):239-76.

D’Argenio V, Esposito MV, Telese A, et al. The molecular analysis ofBRCA1 and BRCA2: next-generation sequencing supersedes conven-tional approaches. Clin Chim Acta. 2015;446:221–225.5.

Tarabeux J, Zeitouni B, Moncoutier V, et al. Streamlined ion torrentPGM-based diagnostics: BRCA1 and BRCA2 genes as a model.Eur J Hum Genet. 2014;22(4):535–541.6.

Pilato B, Pinto R, De Summa S, et al. BRCA1-2 diagnostic workflowfrom next-generation sequencing technologies to variant identificationand final report. Genes Chromosomes Cancer. 2016;55(10):803–813.

Millán Esteban D. Next-generation sequencing in the identification of biomarkers in cutaneous melanoma according to the etiopathogenic development pathway and their potential clinical relevance (Doctoral dissertation, Universitat Politècnica de València).

Kim G, McKee AE, Ning YM, Hazarika M, Theoret M, Johnson JR, Xu QC, Tang S, Sridhara R, Jiang X, He K. FDA approval summary: vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clinical Cancer Research. 2014 Oct 1;20(19):4994-5000.

Ihle MA, Fassunke J, König K, et al. Comparison of high resolutionmelting analysis, pyrosequencing, next generation sequencing andimmunohistochemistry to conventional Sanger sequencing for thedetection of p.V600E and non-p.V600E BRAF mutations. BMC Cancer.2014;14:13

Salman P, de Melo AC, Rico-Restrepo M, Rodriguez J, Russi A, Schmerling RA, Zambrano A, Cinat G. Addressing the unmet needs of patients with BRAF-mutated melanoma in Latin America: Expert perspective. Frontiers in Oncology. 2023 Mar 14;13:1032300.

Mason M, Moffat L. Prostate cancer. Oxford University Press, USA; 2010 Jun 24.

Nair SV, Madhulaxmi, Thomas G, Ankathil R. Next-generation sequencing in cancer. Journal of Maxillofacial and Oral Surgery. 2021 Sep;20:340-4.

Manson-Bahr D, Ball R, Gundem G, et al. Mutation detection informalin-fixed prostate cancer biopsies taken at the time of diagnosisusing next-generation DNA sequencing. J Clin Pathol. 2015;68(3):212–217.

Iacono ML, Buttigliero C, Monica V, et al. Retrospective study test-ing next generation sequencing of selected cancer-associated genes inresected prostate cancer. Oncotarget. 2016;7(12):14394–14404

Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targetednext-generation sequencing panel (ThyroSeq) for detection of muta-tions in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852–E1860.

Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosisof cancer in thyroid nodules with follicular neoplasm/suspicious for afollicular neoplasm cytology by ThyroSeq v2 next-generation sequenc-ing assay. Cancer. 2014;120(23):3627–3634.

Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the multi-geneThyroSeq next-generation sequencing assay on cancer diagnosis inthyroid nodules with atypia of undetermined significance/follicularlesion of undetermined significance cytology. Thyroid. 2015;25(11):1217–1223.

Schneider F, Smith MA, Lane MC, Pantanowitz L, Dacic S, Ohori NP. Adequacy of core needle biopsy specimens and fine-needle aspirates for molecular testing of lung adenocarcinomas. American Journal of Clinical Pathology. 2015 Feb 1;143(2):193-200.

Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, Witchel SF, Gurtunca N, Joyce J, Zhong S, Nikiforova MN. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatric and Developmental Pathology. 2016 Mar;19(2):115-22.

Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosisof cancer in thyroid nodules with follicular neoplasm/suspicious for afollicular neoplasm cytology by ThyroSeq v2 next-generation sequenc-ing assay. Cancer. 2014;120(23):3627–3634.

Chiosea S, Hodak SP, Yip L, Abraham D, Baldwin C, Baloch Z, Gulec SA, Hannoush ZC, Haugen BR, Joseph L, Kargi AY. Molecular profiling of 50 734 Bethesda III-VI thyroid nodules by ThyroSeq v3: implications for personalized management. The Journal of Clinical Endocrinology & Metabolism. 2023 Nov;108(11):2999-3008.

Simbolo M, Mian C, Barollo S, et al. High-throughput mutation profil-ing improves diagnostic stratification of sporadic medullary thyroidcarcinomas. Virchows Arch. 2014;465(1):73–78

Simbolo M, Gottardi M, Corbo V, Fassan M, Mafficini A, Malpeli G, Lawlor RT, Scarpa A. DNA qualification workflow for next generation sequencing of histopathological samples. PloS one. 2013 Jun 6;8(6):e62692.

De Luca A, Normanno N. Predictive biomarkers to tyrosine kinase inhibitors for the epidermal growth factor receptor in non-small-cell lung cancer. Current Drug Targets. 2010 Jul 1;11(7):851-64.

Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic andhistological evolution of lung cancers acquiring resistance to EGFRinhibitors. Sci Transl Med. 2011;3(75):75ra26.

Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens atthe time of acquired resistance to EGFR-TKI therapy in 155 patients withEGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–2247.

Walter AO, Sjin RT, Haringsma HJ, et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediatedresistance in NSCLC. Cancer Discov. 2013;3(12):1404–1415.

Cross DA, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversibleEGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitorsin lung cancer. Cancer Discov. 2014;4(9):1046–1061.

Sun Q, Pastor L, Du J, Powell MJ, Zhang A, Bodmer W, Wu J, Zheng S, Sha MY. A novel xenonucleic acid-mediated molecular clamping technology for early colorectal cancer screening. Plos one. 2021 Oct 5;16(10):e0244332.

Uchida J, Kato K, Kukita Y, et al. Diagnostic accuracy of noninvasivegenotyping of EGFR in lung cancer patients by deep sequencing ofplasma cell-free DNA. Clin Chem. 2015;61(9):1191–1196

Schwaederle M, Husain H, Fanta PT, et al. Detection rate of actionablemutations in diverse cancers using a biopsy-free (blood) circulatingtumor cell DNA assay. Oncotarget. 2016;7(9):9707–9717.

Que D, Xiao H, Zhao B, Zhang X, Wang Q, Wang G. EGFR mutationstatus in plasma and tumor tissues in non-small cell lung cancer servesas a predictor of response to EGFR-TKI treatment. Cancer Biol Ther.2016;17(3):320–327.

Xu S, Lou F, Wu Y, et al. Circulating tumor DNA identified by targetedsequencing in advanced-stage non-small cell lung cancer patients. Cancer Lett. 2016;370(2):324–331.

Marchetti A, Palma JF, Felicioni L, et al. Early prediction of response totyrosine kinase inhibitors by quantification of EGFR mutations in plasmaof NSCLC patients. J Thorac Oncol. 2015;10(10):1437–1443.

Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochemical Journal. 2023 Jan 6;480(1):1-23.

Imamura Y, Lochhead P, Yamauchi M, Kuchiba A, Qian ZR, Liao X, Nishihara R, Jung S, Wu K, Nosho K, Wang YE. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review. Molecular cancer. 2014 Dec;13:1-5.

Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S,Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA andPTEN for anti-EGFR treatment in metastatic colorectal cancer: a sys-tematic review and meta-analysis. Acta Oncol. 2014;53(7):852–864

Pietrantonio F, Yaeger R, Schrock AB, Randon G, Romero-Cordoba S, Rossini D, Fucà G, Ross JS, Kotani D, Madison R, Kim ST. Atypical RAS mutations in metastatic colorectal cancer. JCO Precision Oncology. 2019 Sep;3:1-1.

Hsu HC, Thiam TK, Lu YJ, et al. Mutations of KRAS/NRAS/BRAFpredict cetuximab resistance in metastatic colorectal cancer patients. Oncotarget. 2016;7(16):22257–22270.

Malapelle U, Pisapia P, Sgariglia R, et al. Less frequently mutatedgenes in colorectal cancer: evidences from next-generation sequencingof 653 routine cases. J Clin Pathol. 2016;69(9):767–771.46.

Jesinghaus M, Pfarr N, Endris V, et al. Genotyping of colorectal cancerfor cancer precision medicine: results from the IPH Center for MolecularPathology. Genes Chromosomes Cancer. 2016;55(6):505–521.47.

Wang SR, Malik S, Tan IB, et al. Technical validation of a next-generationsequencing assay for detecting actionable mutations in patients withgastrointestinal cancer. J Mol Diagn. 2016;18(3):416–424

Published

18-07-2024

How to Cite

P. Krubaa, D. A. M. Jha, P. D. A. Mahmood, D. A. Kumar, and D. Abraham. “Next-Generation Sequencing Technology in Cancer”. International Journal of Trends in OncoScience, vol. 2, no. 3, July 2024, pp. 23-31, doi:10.22376/ijtos.2024.2.3.23-31.

Issue

Section

Review Articles