Artificial Intelligence for Cancer Diagnosis & Radiology
Keywords:
Precision medicine, radiography, pathology, Deep learning, machine learning and omicsAbstract
Recent developments in artificial intelligence (AI) technology have sped up the clinical use of AI-enabled devices in the healthcare industry. The Food and Drug Administration (FDA) in the United States has already authorized more than 60 AIenabled medical devices, and the active use of AI technology is seen as a necessary trend for the future of medicine. Clinical applications of medical devices utilizing AI technology are currently under way in the field of cancer, primarily in radiology, and it is anticipated that AI technology will be positioned as a significant core technology. In particular, "precision medicine," a type of medical care that chooses the best course of action for every depending on patient a massive quantity of medical data, such as genomic data, has gained popularity on a global scale; In order to extract really valuable information from a big quantity of medical data and use it for diagnosis and treatment, AI technology is anticipated to be used. The history of AI technology, the present state of medical AI, particularly in the cancer industry, as well as the opportunities and difficulties of AI technology depending on patient profession will be reviewed. The review will also analyze the impact of AI technology on medical professionals, such as doctors and nurses, and how the technology can be used to better patient care. Finally, the review will look at the potential applications of AI technology in the healthcare sector and the ethical implications of its use.
References
Liu Y, Maskell DL, CUDASW SB: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units. BMC Res Notes. 2009 Dec;2:1-0.
Moor J. AI Mag The Dartmouth College Artificial Intelligence Conference: The Next Fifty years. Vol. 27; 2006. p. 87-9.
Hamamoto R, Komatsu M, Takasawa K, Asada K, Kaneko S. Epigenetics analysis and integrated analysis of multiomics data, including epigenetic data, using artificial intelligence in the era of precision medicine. Biomolecules. 2019;10(1):62. doi: 10.3390/biom10010062, PMID 31905969.
Nakaura T, Higaki T, Awai K, Ikeda O, Yamashita Y. A primer for understanding radiology articles about machine learning and deep learning. Diagn Interv Imaging. 2020;101(12):765-70. doi: 10.1016/j.diii.2020.10.001, PMID 33121910.
Chen XW, Gao JX. Big data bioinformatics. Methods. 2016;111:1-2. doi: 10.1016/j.ymeth.2016.11.017, PMID 27908398.
Sumi M, Van Cauteren M, Sumi T, Obara M, Ichikawa Y, Nakamura T. Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology. 2012 Jun;263(3):770-7. doi: 10.1148/radiol.12111248, PMID 22447854.
Winder M. Referral to diagnostic imaging: communication errors between doctors. Pol Arch Intern Med. 2021 Apr 29;131(4):393-5. doi: 10.20452/pamw.15895, PMID 33768997.
Rizwan I Haque IR, Neubert J. Deep learning approaches to biomedical image segmentation. Inform Med Unlocked. 2020 Jan 1;18:100297. doi: 10.1016/j.imu.2020.100297.
Kumar A, Kim J, Lyndon D, Fulham M, Feng D. An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inform. 2017;21(1):31-40. doi: 10.1109/JBHI.2016.2635663, PMID 28114041.
Monshi MMA, Poon J, Chung V. Deep learning in generating radiology reports: A survey. Artif Intell Med. 2020;106:101878. doi: 10.1016/j.artmed.2020.101878, PMID 32425358.
Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y; et al. U-net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019;16(1):67-70. doi: 10.1038/s41592-018-0261-2, PMID 30559429.
Prasad V, Fojo T, Brada M. Precision oncology: origins, optimism, and potential. Lancet Oncol. 2016;17(2):e81-6. doi: 10.1016/S1470-2045(15)00620-8, PMID 26868357.
Senft D, Leiserson MDM, Ruppin E, Ronai ZA. Precision Oncology: the road ahead. Trends Mol Med. 2017;23(10):874-98. doi: 10.1016/j.molmed.2017.08.003, PMID 28887051.
Ku SY, Gleave ME, Beltran H. Towards precision oncology in advanced prostate cancer. Nat Rev Urol. 2019;16(11):645-54. doi: 10.1038/s41585-019-0237-8, PMID 31591549.
Markman M. Precision cancer medicine. MD Advis. 2018;11(1):4-6. PMID 31498974.
Rodon J, Soria JC, Berger R, Miller WH, Rubin E, Kugel A; et al. Genomic and transcriptomic profiling expands precision cancer medicine: the Winther trial. Nat Med. 2019;25(5):751-8. doi: 10.1038/s41591-019-0424-4, PMID 31011205.
Zhang X, Yang H, Zhang R. Challenges and future of precision medicine strategies for breast cancer based on a database on drug reactions. Biosci Rep. 2019;39(9). doi: 10.1042/BSR20190230, PMID 31387972.
Meric-Bernstam F, Brusco L, Shaw K, Horombe C, Kopetz S, Davies MA; et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol. 2015;33(25):2753-62. doi: 10.1200/JCO.2014.60.4165, PMID 26014291.
Thakur AK. Artificial intelligence (AI) in information and communication technology (ICT):: An overview. International Journal of Research and Analysis in Science and Engineering. 2021 May 31;1(3):7-.
Bourdieu P. In other words: essays toward a reflexive sociology. Stanford University Press; 1990.
Bourdieu P. In other words: essays toward a reflexive sociology. Stanford University Press; 1990.
Wong WK, Yin SK, Yang HH, Cheng YH. Using computer-assisted multiple representations in learning geometry proofs. J Educ Technol Soc. 2011 Jul 1;14(3):43-54.
Lee SJ, Loberiza FR, Rizzo JD, Soiffer RJ, Antin JH, Weeks JC. Optimistic expectations and survival after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2003 Jun 1;9(6):389-96. doi: 10.1016/s1083-8791(03)00103-4, PMID 12813447.
Luo X, Wang J, Han Z, Yu Y, Chen Z, Huang F et al. Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth. Gastrointest Endosc. 2021 Sep 1;94(3):627-638.e1. doi: 10.1016/j.gie.2021.03.936, PMID 33852902.
Wang S, Burtt K, Turkbey B, Choyke P, Summers RM. Computer aided-diagnosis of prostate cancer on multiparametric MRI: A technical review of current research. BioMed Res Int. 2014;2014:789561. doi: 10.1155/2014/789561, PMID 25525604.
Wang S, Burtt K, Turkbey B, Choyke P, Summers RM. Computer aided-diagnosis of prostate cancer on multiparametric MRI: A technical review of current research. BioMed Res Int. 2014;2014:789561. doi: 10.1155/2014/789561, PMID 25525604.
Trotter P, Hill QA. Immune thrombocytopenia: improving quality of life and patient outcomes. Patient Relat Outcome Meas. 2018 Nov 27;9:369-84. doi: 10.2147/PROM.S140932, PMID 30568522.
Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Investig. 2021 Apr 1;101(4):412-22. doi: 10.1038/s41374-020-00514-0.
Hu W, Fang L, Ni R, Zhang H, Pan G. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC Cancer. 2022 Jul 30;22(1):836. doi: 10.1186/s12885-022-09940-3, PMID 35907848.
Aggarwal P, Knabel P, Fleischer Jr AB. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. J Am Acad Dermatol. 2021 Aug 1;85(2):388-95. doi: 10.1016/j.jaad.2021.03.109, PMID 33852922.
Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ. Early detection and treatment of skin cancer. Am Fam Physician. 2000 Jul 15;62(2):357-68. PMID 10929700.
Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science. 2003;300(5617):286-90. doi: 10.1126/science.1084564, PMID 12690187.
Auffray C, Caulfield T, Khoury MJ, Lupski JR, Schwab M, Veenstra T. Genome Medicine: past, present and future. Genome Med. 2011;3(1):6. doi: 10.1186/gm220, PMID 21345269.
Iriart JAB. Precision medicine/personalized medicine: a critical analysis of movements in the transformation of biomedicine in the early 21st century. Cad Saude Publica. 2019 Mar 25;35(3):e00153118. doi: 10.1590/0102-311X00153118, PMID 30916181.
Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin Cancer Res. 2018 Mar 15;24(6):1248-59. doi: 10.1158/1078-0432.CCR-17-0853, PMID 28982688.
Milunović V, Mandac Rogulj I, Planinc‐Peraica A, Bulycheva E, Kolonić Ostojić S. The role of microRNA in myelodysplastic syndromes: beyond DNA methylation and histone modification. Eur J Haematol. 2016 Jun;96(6):553-63. doi: 10.1111/ejh.12735, PMID 26773284.
Hong SN. Genetic and epigenetic alterations of colorectal cancer. Intest Res. 2018 Jul;16(3):327-37. doi: 10.5217/ir.2018.16.3.327, PMID 30090031.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Wafaa Mohamed Baker Ali, Munirah Sultan Alhumaidi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.